Soit a et b deux entiers naturels non nuls de l'ensemble $E = \{ ax - by \text{ avec } x \text{ et } y \text{ appartenant à } \mathbb{Z} \}$. On pose $E^+ = E \cap \mathbb{N}^*$

E + est donc l'ensemble des entiers naturels non nuls de la forme a x - b y avec x et y appartenant à \mathbb{Z} .

- **1.** Démontrer que E $^+$ est non vide, en déduire qu'il admet un plus petit élément noté d, ainsi il existe deux entiers relatifs x_0 et y_0 tel que : $d = a x_0 b y_0$.
- **2.** Démontrer que tout multiple de *d* est un élément de E
- 3. Soit n un élément de E et r le reste de la division euclidienne de n par d. Démontrer que r est, comme n, un élément de E. L'entier n peut-il appartenir à E⁺? En déduire que r = 0 et que n est multiple de d
- **4.** En déduire que E est l'ensemble des multiples de d (noté $d \mathbb{Z}$)
- 5. Démontrer que a et b appartiennent à E. En déduire que d est un diviseur commun de a et b
- **6.** Démontrer que si d' est un diviseur commun positif de a et b alors d' divise d et par suite d' $\leq d$ (Indication : $d = a x_0 b y_0$)
- 7. Qu'en déduit-on sur d?

CORRECTION

- 1. Si a > 0 et x = 1 et y = 0 alors ax by = a donc $a \in E^+$, E^+ est non vide. Si a < 0 et x = -1 et y = 0 alors ax - by = -a donc $-a \in E^+$, E^+ est non vide. E^+ est un ensemble non vide d'entiers naturels donc admet un plus petit élément strictement positif d, $d \le |a|$ Il existe donc deux entiers relatifs x_0 et y_0 tel que : $d = ax_0 - by_0$.
- Soit *n* un multiple de *d*, il existe donc un entier relatif *p* tel que n = dp donc dp = p ($ax_0 by_0$) soit $n = a(px_0) b(py_0)$ $n = a(px_0) b(py_0)$ avec (px_0) et (py_0) entiers relatifs donc $n \in E$. Tout multiple de *d* est un élément de E
- 3. Dans la division euclidienne de n par d, il existe deux entiers r et q tels que n = d q + r avec $0 \le r < d$ $n \in E$ donc il existe u et v entiers relatifs tels que n = a u b v or d = a $x_0 b$ y_0 donc r = a u b v (a $x_0 b$ $y_0)$ r = a $(u x_0) b$ $(v y_0)$ donc $r \in E$, $0 \le r$ donc $r \in E^+$ r < d or d est le plus petit élément non nul de E^+ donc r = 0, donc n = d q, n est un multiple de d.
- **4.** E contient tous les multiples de d (question 2) et tout élément de E est un multiple de d (question 3) donc E est l'ensemble des multiples de d.
- Si x = 1 et y = 0 alors ax by = a donc $a \in E$ or donc $a \in E$ do
- **6.** Si d' est un diviseur commun positif de a et b alors d' divise $a x_0 b y_0$, or $d = a x_0 b y_0$ donc d' divise d dest un entier strictement positif et d' divise d donc d' $\leq d$.
- 7. d est un diviseur commun de a et b donc d divise PGCD(a; b)Tout diviseur commun positif de a et b divise d en particulier PGCD(a; b) divise d est un entier strictement positif et d divise PGCD(a; b) et PGCD(a; b) divise d donc d = PGCD(a; b)

Théorème de Bézout Brachet

Si a et b sont deux entiers naturels non nuls, si d = PGCD(a; b) alors il existe deux entiers relatifs x_0 et y_0 tels que $d = a x_0 - b y_0$.