LYCEE ZAHROUNI

Samedi 11 Janvier 2020

TP 2 (physique) 2eme trimestre
Sciences physiques

4ème SCIENCE 1

Prof : BOUSSADA ATEF

La résonance d'intensité

I-/ Buts du T.P:

- Étude expérimentale de la variation de l'intensité efficace I du courant électrique traversant un circuit RLC série en régime forcé en fonction de la fréquence N.
- Étude expérimentale de l'influence de l'amortissement sur la résonance d'intensité

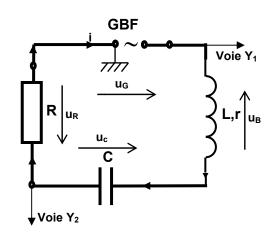
II-/ Principe du T.P:

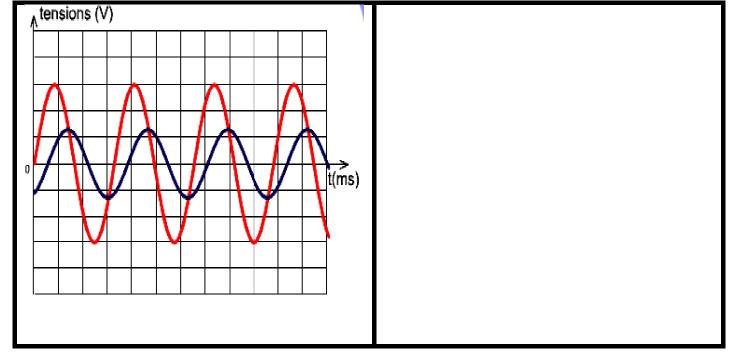
On considère le circuit électrique série comportant :

- Un générateur BF délivrant une tension u(t) = $U_m sin(\omega t + \varphi_u)$ et le courant traversant le circuit est i(t) $I_m sin(\omega t + \varphi_i)$
- Un resistor de résistance R variable.
- Une bobine d'inductance L =
- Un condensateur de capacité C =
- Un ampèremètre.

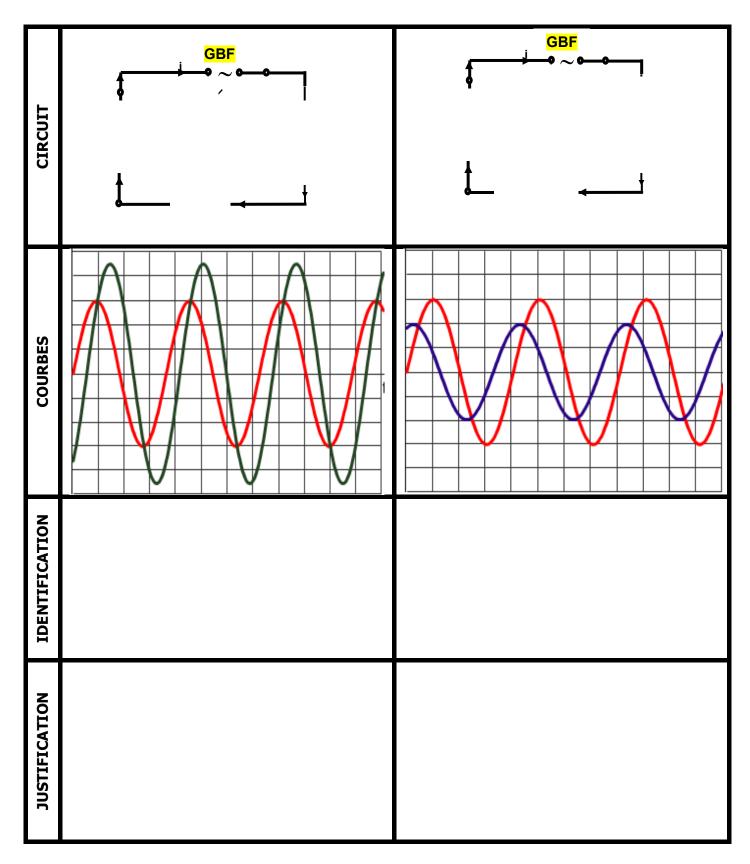
Et un voltmètre pour vérifier qu'à chaque fois la tension efficace aux bornes du générateur est constante **U** =

On fait varier la fréquence **N** de la tension excitatrice à l'aide du générateur BF et on note la valeur de l'intensité efficace **I** indiquée par l'ampèremètre.


III-/ Travail demandé :


1-/ Fréquence propre No du circuit

Calculer la fréquence propre N_0 du circuit. $N_0 = \dots$

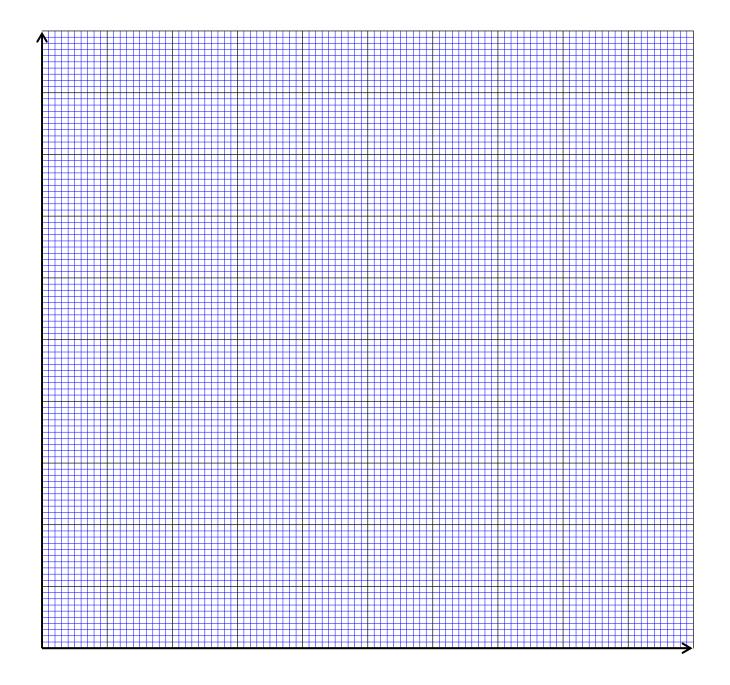

2-/ Schéma du circuit :

- * Faire le schéma du circuit électrique et réaliser le montage.
 - Le générateur BF est l'excitateur.
 - Le circuit RLC est le résonateur.

	1	2	3
COURBES			
DESCRIPTION			
DEPHASAGE			
FREQUENCE			
NATURE			
CONSTRUCTION DE FRESNEL			

3-/ Variation de I pour R = Ω .

En utilisant le montage précédent remplir le tableau de valeurs suivant :


N (Hz)	50	100	200	300	400	450	475	500	520	550	600	700	900
I_1 (mA)													

4-/ Variation de I pour R = Ω .

N ((Hz)	50	100	200	300	400	450	475	500	520	550	600	700	900
I ₁ ((mA)													

5-/ Représentation graphique :

• Représenter sur le même papier millimétré les graphes de $\mathbf{I} = \mathbf{f}(\mathbf{N})$ pour les deux valeurs de R.

Comparer la fréquence à la résonance d'intensité à la fréquence propre.
Préciser l'influence de la résistance sur la résonance d'intensité (résonance floue et résonance aigue)